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I. INTRODUCTION

This supplementary information is organized as follows. In Sec. S.II we introduce the

correlation matrix and show how it is obtained from the system’s dynamics. We then show

how to analyze the local dynamics and obtain the scaling of the stability (Si) and impact

(Ii) in Sec. S.III. The propagation dynamics, Γ(l) and β, together with the correlation

distribution, P (G) and ν, are derived in Sec. S.IV, followed by the derivation of the cascade

sizes, Ci, in Sec. S.V. Next we show how to generalize the theory to dynamics that cannot

be factorized in Sec. S.VI. In Sec. S.VII we discuss the numerical simulations and explicitly

analyze the four dynamical models that were simulated in the paper. The analysis of the

empirical data is discussed in Sec. S.VIII. This analysis raises a general issue regarding the

sensitivity of the formalism to the construction process of the network. We address this

issue, showing that the formalism is, in fact, robust against different construction schemes

as well as partial knowledge of the network topology in Sec. S.IX.

II. THE CORRELATION MATRIX

We characterize the dynamical behavior of a system by the activity xi(t), a time dependent

variable assigned to each node i (i = 1, . . . , N). Most generally, the activities follow the

dynamical rate equation

dxi
dt

= fi (x1(t), . . . , xN (t)) , (1)

in which the temporal dynamics of i is affected by all other xj. To quantify the impact of a

perturbation j we first focus on the local correlation matrix

Rij =

∣

∣

∣

∣

∂xi/xi
∂xj/xj

∣

∣

∣

∣

, (2)
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where xi, xj, and the derivative itself are all taken under steady-state condition, namely

fi (x1(t), . . . , xN(t)) = 0. The terms Rij capture the impact that a small perturbation in

xj has on the value of xi, providing a quantitative measure for the influence of j on the

activity of i. The partial derivative (∂/∂x) in (2) implies that no other node activity has

changed, so that the local correlation matrix, Rij, captures the correlation between i and j,

disregarding the effect of the rest of the network, not accounting for indirect interactions -

hence the term local. In fact, Rij 6= 0 only if i and j are directly linked, namely only if in

the adjacency matrix Aij = 1.

To account for indirect interactions we introduce the correlation matrix,

Gij =

∣

∣

∣

∣

dxi/xi
dxj/xj

∣

∣

∣

∣

, (3)

in which the full derivative (d/dx) implies that now all nodes are allowed to change in

response to j’s perturbation, hence indirect effects are also accounted for. Each column in

Gij captures the response of the entire network to a permanent perturbation in the state of

node j, quantifying the interdependence between every pair of nodes in the network. Clearly,

the diagonal terms of this matrix must satisfy

dxi/xi
dxi/xi

= 1. (4)

For the off-diagonal terms, i 6= j, we write

dxi/xi
dxj/xj

=
∂xi/xi
∂xj/xj

+
N
∑

q=1
q 6=j

(

∂xi/xi
∂xq/xq

)(

dxq/xq
dxj/xj

)

, (5)

where we used the mathematical identity dxi/dxj = ∂xi/∂xj +
∑

q 6=j(∂xi/∂xq)(dxq/dxj). In

matrix form Eq. (5) becomes [1]







Gii = 1

Gij =
∑N

q=1RiqGqj (i 6= j)
, (6)

a set of N ×N coupled linear equations, taking Rij as input and providing Gij.
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III. LOCAL DYNAMICS

The local dynamics, namely the stability and the impact functions, are captured by the

direct correlations between neighboring nodes, hence we focus on the local correlations,

captured by Rij (2). The impact of node i on its nearest neighbors is

Ii =
N
∑

j=1

AijR
T
ij = ki

〈

RT
ij

〉

j∈Ki(1)
(7)

and the stability of node i is

Si =
1

∑N
j=1AijRij

=
1

ki 〈Rij〉j∈Ki(1)

. (8)

Here Ki(l) it the group of all nodes at distance l from i, and 〈·〉y is an average over all terms

in y. Note that here we used the local correlation matrix Rij to approximate Gij in the

definition of Ii and Si (see Eqs. (3) and (4) in paper). The meaning of this approximation

is that the impact between nearest neighbors is not significantly affected by indirect paths.

Indeed, as we later show, correlations decay exponentially with distance, hence only the

shortest paths dominate the impact between node pairs. Equations (7) and (8) indicate

that the scaling of Ii and Si on the degree, ki, is determined by the degree dependence of

Rij, prompting us to derive this dependence below.

A. The Scaling of Rij

We start from the dynamical equation

dxi
dt

= W (xi)−
N
∑

n=1

AinQ(xi, xn), (9)

where W (xi) describes the dynamics of i in isolation, and Q(xi, xj) describes the effect of

the pairwise interactions. At the steady state dxi/dt = 0, allowing us to write

1−
N
∑

n=1

AinQ̃(xi, xn) = 0, (10)

where Q̃(xi, xn) = Q(xi, xn)/W (xi). To obtain Rij we induce a small perturbation on j (the

source) and follow the response of i (the target): xj → xj + ∂xj, resulting in xi → xi + ∂xi.
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Note that in Rij , the activities of all other nodes, apart from i and j, remain unchanged (’∂’

vs. ’d’). Hence following j’s perturbation the system will be driven into a new steady state,

in which

1−
N
∑

n=1
n 6=j

AinQ̃(xi + ∂xi, xn)− AijQ̃(xi + ∂xi, xj + ∂xj) = 0. (11)

We expand (11) in orders of ∂xi and ∂xj using a perturbative approach, providing

1 −

N
∑

n=1
n 6=j

Ain[Q̃(xi, xn) + Q̃′
xi
(xi, xn)∂xi]

− Aij

(

Q̃(xi, xj) + Q̃′
xi
(xi, xj)∂xi + Q̃′

xj
(xi, xj)∂xj

)

+O(∂xi∂xj) = 0, (12)

where Q̃′
xi(j)

(xi, xj) = ∂Q̃/∂xi(j), a derivative taken at the steady state. Excluding non-linear

terms in ∂xi and ∂xj, namely O(∂xi∂xj), and using the steady state assumption (10), we

bring (12) into the form

(

N
∑

n=1

AinQ̃
′
xi
(xi, xn)

)

∂xi +
(

AijQ̃
′
xj
(xi, xj)

)

∂xj = 0. (13)

The sum on the l.h.s. of (13) can be written as

N
∑

n=1

AinQ̃
′
xi
(xi, xn) = ki

〈

Q̃′
xi
(xi, xn)

〉

n∈Ki(1)
, (14)

from which we obtain

∂xi
∂xj

= −
AijQ̃

′
xj
(xi, xj)

ki

〈

Q̃′
xi
(xi, xn)

〉

n∈Ki(1)

, (15)

and hence the local correlation matrix (2)

Rij =
AijxjQ̃

′
xj
(xi, xj)

kixi

〈

Q̃′
xi
(xi, xn)

〉

n∈Ki(1)

. (16)

The structure of Rij is a result of two competing dynamical forces. The numerator captures

the effect of the network neighbors by quantifying the impact of the perturbation in xj on

the interaction term Q̃(xi, xj). The denominator captures the impact of self-regulation of
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node i, given by the dependence of Q̃(xi, xn) on xi. Thus if the self regulation dominates, the

impact of the interactions is small, and if the network regulation dominates, the neighbors

play a significant dynamical role, and Rij is large.

To derive the dependence of Rij on ki and kj we focus on dynamical models for which

Q̃(xi, xj) could be factorized as

Q̃(xi, xj) = f(xi)g(xj), (17)

where f(xi) describes the self regulating mechanism and g(xj) describes the interactions.

We can now separate the terms of (16) as

Q̃′
xi
(xi, xj) = f ′(xi)g(xj)

Q̃′
xj
(xi, xj) = f(xi)g

′(xj)
〈

Q̃′
xi
(xi, xn)

〉

n∈Ki(1)
= f ′(xi) 〈g(xn)〉n∈Ki(1)

, (18)

so that Rij takes the form

Rij =
Aij

〈g(xn)〉n∈Ki(1)

Sg(xj)Sf (xi) (19)

where

Sf (xi) =
f(xi)

kixif ′(xi)

Sg(xj) = xjg
′(xj). (20)

The dependence of Rij on ki is determined by Sf (xi) and its dependence on kj by Sg(xj). As

all the terms in (20) are calculated under steady state condition, we first derive and analyze

the steady state of (9).

B. Analysis of the Steady-state

First we write Eq. (10) as

1−
N
∑

n=1

Ainf(xi)g(xn) = 0, (21)
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from which we obtain

f(xi) =
1

ki 〈g(xn)〉n∈Ki(1)

(22)

and consequently, if f(xi) is invertible,

xi = f−1

(

1

ki 〈g(xn)〉n∈Ki(1)

)

= f−1

(

1

〈g(xn)〉n∈Ki(1)

ξi

)

, (23)

where in (22) and (23) we used

〈g(xn)〉n∈Ki(1)
=

1

ki

N
∑

n=1

Aijg(xn) (24)

and ξi = 1/ki. Note that 〈g(xn)〉n∈Ki(1)
is an average taken over the neighbors of i, and hence

it depends on the degrees kn of i’s nearest neighbors. In the absence of degree correlations,

however, kn is independent of ki. Hence the average appearing in (24) does not depend on

i, but rather is an average over nearest neighbor nodes in general, namely 〈·〉K(1). We thus

adopt below the simpler notation 〈g(xn)〉n∈Ki(1)
= 〈g(x)〉K(1), emphasizing that this average

is independent of i.

We can now expand xi in powers of ξi as

xi =
∞
∑

n=0

Cnξ
n
i = C0 + C1ξi + C2ξ

2
i + . . . , (25)

where

Cn =
1

n!

(

1

〈g(x)〉K(1)

)n
dnf−1(ξ)

dξn

∣

∣

∣

∣

ξ=0

. (26)

Equations (25) and (26) show that the dependence of xi on ξi, and hence on ki, is fully

determined by the structure of f(xi) (through f
−1(ξ)), namely by the self regulation mech-

anism.

Next we use (22) and (23) in order to express each of the terms composing Sf (xi) in (20):

xi ∼ f−1(ξi)

f(xi) ∼ ξi

f ′(xi) ∼
∂ξi
∂xi

∼
∂ξi

∂f−1(ξi)
. (27)
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This allows us to write (20)

Sf (xi) ∼ ξ2i
1

f−1(ξi)

∂f−1

∂ξi
. (28)

Following (25), we expand Sf (xi) in powers of ξi, obtaining

Sf (xi) ∼ ξ2i

∑∞

n=0 nCnξ
n−1
i

∑∞

n=0Cnξ
n
i

, (29)

where Cn are taken from (26), and for large ki (small ξi) we take only the leading terms.

C. Stability

We can now write Si (8) using (19) as

Si ∼
1

ki 〈Sg(xj)〉j∈Ki(1)
Sf (xi)

∼ ξ−1
i

∑∞

n=0Cnξ
n
i

∑∞

n=0 nCnξ
n−1
i

, (30)

where we used (29) to substitute for Sf (xi). We denote by n0 the leading term in (25) and

by n1 its leading non-vanishing term. To be specific if in (25)

xi ∼ f−1(ξi) ∼ C0 + Cn1ξ
n1
i + . . . (31)

we have n0 = 0 and n1 > n0, but if in (25) we have C0 = 0 (or n1 < 0) then n0 = n1, namely

the leading term and the leading non-vanishing term coincide. Using this notation we find

that in the limit of large ki (small ξi) the leading terms of (30) provide

Si ∼ ξ−δi = kδi (32)

where

δ = n1 − n0. (33)

Two universality classes emerge based on the structure of the function f−1(x):

Uniform stability: If in (25) n1 = n0 Eq. (33) predicts that δ = 0 in (32) and hence the

stability is independent of the node’s degree and consequently the stability distribution P (S)

is independent of the degree distribution P (k).
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Heterogeneous stability: The only other possibility is that n0 = 0, and n1 > 0, for which

δ = n1 > 0 (33), the stability is driven by the node’s degree and P (S) is determined by P (k).

A special case is where C0 → ∞, which occurs when f−1(ξ) diverges for ξ → 0. Under

this condition, the series expansion of (25) cannot be carried out around ξi = 0, and instead

we use the Laurent series, which includes negative powers

xi ∼ f−1(ξi) =
∞
∑

n=−∞

Cnξ
n
i . (34)

Repeating the above derivation shows that this case leads to uniform stability as well, so

that in effect, Eq. (33) remains valid only now n0 and n1 could also take negative values.

D. Impact

We use (19) to write the impact (7) as

Ii ∼ ki 〈Sf (xj)〉j∈Ki(1)
Sg(xi) ∼ kixig

′(xi), (35)

where we swapped xi and xj to account for the transposed matrix RT
ij . To obtain the degree

dependence of (35) we focus on g(xi), which following (23), we write as

g(xi) = g

[

f−1

(

1

〈g(x)〉K(1)

ξi

)]

. (36)

Expanding (36) in powers of ξi, as before, provides the dependence of g(xi) on ki

g(xi) =
∞
∑

m=0

Cmξ
m
i = C0 + C1ξi + C2ξ

2
i + . . . , (37)

where

Cm =
1

m!

(

1

〈g(x)〉K(1)

)m
dmg(f−1(ξ))

dξm

∣

∣

∣

∣

ξ=0

. (38)

We write the impact (35) as

Ii ∼
1

ξi
f−1(ξi)g

′
(

f−1(ξi)
)

(39)

where we used (23) to express xi, giving rise to
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Ii ∼
1

ξi
f−1(ξi)

(

∂f−1(ξi)

∂ξi

)−1
∂g (f−1(ξi))

∂ξi
. (40)

We analyze (40) term by term: according to (28) we have

f−1(ξi)

(

∂f−1(ξi)

∂ξi

)−1

∼ ξ2
1

Sf (xi)
∼ ξ1−δi . (41)

The contribution of the last term in (40) is determined by the leading non vanishing power

in the expansion of (37) to be

∂g (f−1(ξi))

∂ξi
∼ ξm1−1

i . (42)

To be specific, whether g(f−1(ξi)) ∼ ξm1
i or g(f−1(x)) ∼ C0+Cm1ξ

m1
i , the derivative in (42)

has ξm1−1
i as its leading term. Collecting all terms, (41) and (42), we arrive at (40)

Ii ∼ ξ−1
i ξ1−δi ξm1−1

i ∼ ξ−ϕi ∼ kϕi (43)

where

ϕ = 1 + δ −m1. (44)

As before, in case the Taylor expansion (37) cannot be carried out at ξi = 0, namely when

g(f−1(ξi))|ξi→0 → ∞, we use the Laurent expansion

g
(

f−1(ξi)
)

=
∞
∑

m=−∞

Cmξ
m
i . (45)

Here, if the leading term is associated with a negative power, m1 in (44) will be negative.

The value of ϕ determines the patterns of the local impact:

Uniform impact: In case ϕ = 0 (namely m1 = 1 + δ) we have Ii ∼ k0i , describing a

system where the impact is independent of the node’s degree. As a consequence the impact

distribution, P (I), will be independent of the degree distribution, P (k).

Heterogeneous impact: If ϕ 6= 0 we have Ii ∼ kϕi , the impact scales with the node’s

degree and P (I) is driven by P (k).
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Local dynamics - summary:

The degree dependence of Si is determined by the functional form of f(x) via the

leading terms of the Laurent expansion

f−1(x) =
∞
∑

n=∞

Cnx
n.

• If the lowest power in the expansion is f−1(x) ∼ xn1 (n1 6= 0) we have δ = 0,

providing uniform stability.

• If the lowest power is n0 = 0 we have f−1(x) ∼ C0 + Cn1x
n1 (n1 > n0) and

δ = n1, providing heterogeneous stability.

The degree dependence of Ii is determined by both f(x) and g(x) through

g
(

f−1(x)
)

=
∞
∑

m=∞

Cmx
m.

Denoting the lowest non vanishing power in the expansion by m1, we have ϕ =

1 + δ −m1.

• If ϕ = 0, we have uniform impact.

• If ϕ 6= 0, we have heterogeneous impact.

IV. PROPAGATION OF PERTURBATIONS

The correlation function Γ(l) follows the perturbations experienced by all nodes at dis-

tance l from the source, namely

Γ(l) =
1

N

N
∑

j=1

∑

i∈Kj(l)

Gij . (46)
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To derive (46) we first focus on individual correlations at distance l, given by

G(l) =
1

N

N
∑

j=1

1

|Kj(l)|

∑

i∈Kj(l)

Gij =
〈

〈Gij〉i∈Kj(l)

〉

j
, (47)

where |Kj(l)| is the number of nodes in the Kj(l) group. Hence the correlation function

Γ(l) captures the response of all nodes at l, while G(l) captures the response of the average

node at l. In other words, in Γ(l) we sum over all individual correlations G(l) between pairs

separated by distance l as

Γ(l) = K(l)G(l). (48)

Using (6) we write (47) as

G(l) =
1

N

N
∑

j=1

1

|Kj(l)|

∑

i∈Kj(l)

N
∑

q=1

RiqGqj (49)

for all l > 0; the l = 0 case corresponds to i = j, for which G(0) = 1. We now focus on the

sum at the r.h.s. of (49). As the elements of Riq vanish unless q ∈ Ki(1), this sum includes

only nearest neighbors of i. Moreover, since i ∈ Kj(l), these neighbors of i must satisfy

q ∈ Kj(l + n), where n = −1 . . . lmax, in case the network is directed, and n = −1, 0 or 1

in case it is undirected. Indeed, since i is at distance l from j, i’s neighbors q must be at

distance l − 1 or greater from j. Consequently their correlation with j is on average given

by

Gj(l + n) = 〈Gqj〉q∈Kj(l+n)
, (50)

which describes the average impact of the j perturbation at distance l + n. Note that

G(l) =
1

N

N
∑

j=1

Gj(l). (51)

We can thus split the sum of Eq. (49) into groups of nodes, the nth group being Ki(1) ∩

Kj(l+ n), including all nearest neighbors of i, which are at distance l+ n from j. Equation

(49) now takes the form

G(l) =
1

N

N
∑

j=1

1

|Kj(l)|

∑

i∈Kj(l)

lmax
∑

n=−1

〈Riq〉q∈Ki(1)
|Ki(1) ∩Kj(l + n)|Gj(l + n), (52)
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which together with the equation for l = 0 (and using (51)) becomes

G(0) = 1

G(l) = ρ

lmax
∑

n=−1

ǫn(l)G(l + n), (53)

where

ρ =
1

N

N
∑

j=1

1

|Kj(l)|

∑

i∈Kj(l)

ki 〈Riq〉q∈Ki(1)
=

〈

〈

ki 〈Riq〉q∈Ki(1)

〉

i∈Kj(l)

〉

j

(54)

and

ǫn(l) =
1

N

N
∑

j=1

1

|Kj(l)|

∑

i∈Kj(l)

|Ki(1) ∩Kj(l + n)|

|Ki(1)|
(55)

is the expansion factor of the network. The contribution of the dynamics is accounted for

by ρ, which depends on Rij , and the contribution of the network topology is given by ~ǫ(l),

which depends solely on the wiring diagram. Note that

lmax
∑

n−1

ǫn(l) = 1, (56)

where for an undirected network one can substitute lmax by +1, namely ǫ−1(l)+ǫ0(l)+ǫ+1(l) =

1.

To get a better understanding of the meaning of ~ǫ(l) consider a pair of nodes in an

undirected network, the source j, and the target i at distance l, namely i ∈ Kj(l). The

terms ~ǫ(l) capture the fraction of i’s nearest neighbors that are at Kj(l − 1) (ǫ−1(l)), Kj(l)

(ǫ0(l)), and Kj(l + 1) (ǫ+1(l)). If the network is directed, then i’s neighbors could belong

to Kj(l) for l = −1, . . . ,∞, where an infinite distance between a pair of nodes means that

there exists no path between them. Thus, in non-technical terms, Eq. (53) can be intuitively

illustrated as
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G(l) =











The impact

of a nearest

neighbor











×





























The fraction

of the target’s

neighbors at l − 1

from the source















G(l − 1) +















The fraction

of the target’s

neighbors at l

from the source















G(l)

+















The fraction

of the target’s

neighbors at l + 1

from the source















G(l + 1) + . . .















. (57)

The expansion factor (55) can be empirically measured from the topology of the network,

as shown in Fig S1, and then used as input in Eq. (53). In Sec. S.IVA we derive the terms

of ~ǫ(l) analytically for large networks.

Note that ρ in (54) is in general a function of l (through the i ∈ Kj(l) term attributed

to the average), namely ρ = ρ(l). This dependence comes from the distribution of Riq,

capturing the correlations between nodes i that are at distance l from the source j, and

their nearest neighbors q. However, as we have shown in Sec. S.III, Riq is determined by

the interacting node’s degrees, ki and kq. In the absence of degree correlations ki, kq and

hence ρ, all become independent of l, their degree distribution being the same as any nearest

neighbor degree distribution. This allows us to substitute the terms q ∈ Ki(1) and i ∈ Kj(l)

in (54) by the simpler form K(1), which indicates that the average is carried out over nearest

neighbor nodes, but not specific to i or j, as the degrees of all nearest neighbor nodes have

the same distribution. Note that above we also substituted l by l = 1, as with no degree

correlations, the degree distribution of nearest neighbors and that of neighbors at distance

l is the same. We can thus simplify (54) as

ρ =
〈

ki 〈Riq〉K(1)

〉

K(1)
, (58)

in which the l dependence is removed. In the general solution we present below the l

dependence of ρ could be accounted for. For simplicity, however, as we will not be using

this dependence later on, we take ρ to be l independent throughout the rest of this work.
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FIG. 1: The expansion factor and network growth. The expansion factor ~ǫ(l) vs. l for (a1) an

Erdős-Rényi network; (a2) a scale-free network; (a3) an empirically obtained online social network

(UCIonline) [2]. For small l the network is expanding according to (69) and ǫ+1(l) dominates,

indicating that nodes tend to link to outer shells. For large l, as the network expansion saturates

ǫ+1(l) becomes small, indicating that nodes tend to link to inner shells. For l ∼ 〈l〉, ǫ0(l) is maximal,

indicating that nodes at 〈l〉 tend to link to equidistant nodes. (b1) - (b3) The probability that a

randomly selected pair of nodes is at distance l, |K(l)|, grows exponentially for l < 〈l〉. For l > 〈l〉

the network growth saturates and the shells begin to contract. The expansion and contraction are

reflected by ~ǫ(l) through the ratio between ǫ+1(l) and ǫ−1(l): for small l ǫ+1(l) dominates and for

large l ǫ−1(l) dominates.

A. General Solution

To solve Eq. (53) we assume that the impact of the source on the target is carried mainly

through the nodes closer to the source, allowing us to collapse the terms of ~ǫ(l) as

lmax
∑

n=1

ǫn(l) → ǫ+1(l), (59)

having ǫ+1(l) account for all nodes at distances l+1 to lmax from the source. In other words,

ǫ+1(l) denotes the fraction of the target’s neighbors that are at any distance greater than

l from the source (and not just at l + 1). This is equivalent to truncating (57) after the

G(l + 1) term, and substituting the relevant coefficient as
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(60)

For an undirected network ǫn(l) = 0 for n > 1, and hence (59) is exact.

Next we use a continuum approximation, referring to l as a continuous variable. This

approximation, exact in the limit of large networks (N → ∞), allows us to write Eq. (53)

in differential form as







G(0) = 1

G(l) = ρ[ǫ−1(l)G(l − 1) + ǫ0(l)G(l) + ǫ+1(l)G(l + 1)]
. (61)

Taking G(l) = exp[f(l)] we have

1 = ρ
[

ǫ−1(l)e
− df

dl + ǫ0(l) + ǫ+1(l)e
df

dl

]

, (62)

where we used f(l ± 1) ≈ f(l)± df/dl. From (62) we find

exp

(

df

dl

)

=
ρ−1 − ǫ0(l)±

√

(ρ−1 − ǫ0(l))
2 − 4ǫ−1(l)ǫ+1(l)

2ǫ+1(l)
, (63)

which, using the fact that
∑

n ǫn(l) = 1, provides

f(l) =

∫ l

0

ln

[

1

ǫ̃+(l) + ǫ̃−(l)

(

ǫ̃+(l)− 1 + ρ−1

±
√

(1− ρ−1)2 − 2ǫ̃+(l)(1− ρ−1) + ǫ̃2−(l)

)]

dl̃, (64)

where ǫ̃±(l) = ǫ+1(l) ± ǫ−1(l). To satisfy the boundary condition in which G(l) approaches

zero for large l, we select the solution where the square-root is subtracted in Eq. (64),

providing

G(l) = exp

{∫ l

0

[lnΨ(l̃, ρ)]dl̃

}

, (65)

where

Ψ(l, ρ) =
1

ǫ̃+(l) + ǫ̃−(l)

(

ǫ̃+(l)− 1 + ρ−1 −
√

(1− ρ−1)2 − 2ǫ̃+(l)(1− ρ−1) + ǫ̃2−(l)

)

. (66)



16

B. Large networks

Equations (65) and (66) provide the correlation function G(l), receiving ~ǫ(l) and ρ as

input. To obtain an analytical expression for ~ǫ(l) we focus below on large networks in the

limit N → ∞. For simplicity, we focus on undirected networks, for which ~ǫ(l) = (ǫ−1, ǫ0, ǫ+1)

has only three terms.

Consider a node i and its shells Ki(l) of neighbors at distance l, in a large network with

an arbitrary degree distribution P (k). While P (k) captures the degree distribution of the

whole network, the degree distribution of nodes from Ki(l) is biased towards nodes with a

higher degree, as the selection process favors nodes that have more links, giving rise to the

distribution [3]

q(k) =
kP (k)

〈k〉
, (67)

and hence providing the average degree of nodes in Ki(l) as 〈kn〉n∈Ki(l)
= 〈k2〉 / 〈k〉, and the

average residual degree

kres =
∑

j∈Ki(l)

(kj − 1)q(kj) =
〈k2〉 − 〈k〉

〈k〉
. (68)

The meaning of (68) is that each node in Ki(l) links to a single node from Ki(l − 1) and

kres additional nodes from other shells. However, in the N → ∞ limit no loops are present

in the network [3], a condition only satisfied if all of the kres remaining edges link to nodes

from Ki(l+1). As a result the size of the shells grows according to |Ki(l+1)| = kres|Ki(l)|,

which leads to an exponential growth of the network shells as

|Ki(l)| =
〈k〉2

〈k2〉 − 〈k〉
eαl (69)

where

α = ln kres (70)

characterizes the rate of the network expansion. Using (68) we find that α is related to the

average neighbor’s degree as

eα ≈
〈

〈kn〉n∈Ki(1)

〉

i
, (71)
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capturing the average number of next nearest neighbors of a node. Moreover, α is closely

related to the small world phenomena, as by integrating both sides of Eq. (69) we arrive at

〈l〉 ∼
lnN

α
, (72)

representing the small world property, indicating that the larger is α the more pronounced is

the small world nature of the network. For an Erdős-Rényi (ER) network, with P (k) being

Poisson, we find that α = ln 〈k〉. For a scale-free (SF) network with P (k) = k−γ/ζ(γ), we

write the mth moment as 〈km〉 = ζ(γ −m)/ζ(γ), where ζ(γ) =
∑∞

k=1 k
−γ is the Riemann

zeta function. We thus find that α = ln(ζ(γ − 2) − ζ(γ − 1)) − ln ζ(γ − 1), which diverges

if γ < 3, indicating that the number of second neighbors, |Ki(2)|, approaches infinity. In

general, heterogeneity in the degrees, characterized by a large 〈k2〉, leads to a larger value for

α, so that for a fat tailed degree distribution α > ln 〈k〉, and as the heterogeneity increases,

α increases as well. While (70) is exact in the N → ∞ limit, it tends to overestimate

the inflation rate of |K(l)| for finite networks. A discussion on the evaluation of α for real

networks appears in Fig. S2.

Consider the number of links E+1(l) drawn from nodes in the shell Ki(l), to neighboring

nodes in the shell Ki(l + 1). It is proportional to the number of nodes in the shell |Ki(l)|,

to the average degree of nodes in Ki(l) and to ǫ+1(l), the fraction of these links that reach

a node in Ki(l + 1). This has to be consistent with the number of links in the opposite

direction, emerging from Ki(l + 1), connecting to nodes from Ki(l). Thus we have

|Ki(l)| 〈k〉Ki(l)
ǫ+1(l) = |Ki(l + 1)| 〈k〉Ki(l+1) ǫ−1(l + 1). (73)

The absence of loops in the N → ∞ limit prohibits links between nodes within the same

shell, hence ǫ0(l) = 0, which using (56) provides ǫ−1(l+ 1) = 1− ǫ+1(l+ 1). This enables us

to write (73) as

|Ki(l)|ǫ+1(l) = |Ki(l + 1)|(1− ǫ+1(l + 1)), (74)

a recursive formulation of ~ǫ(l). To complete the formulation consider ~ǫ(l) at l = 0. It simply

accounts for the nearest neighbors of a node, who are clearly all at the Ki(1) shell, so that

~ǫ(0) = (0, 0, 1) by definition. Together with Eqs. (69) and (74) this provides
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FIG. 2: Evaluating the expansion rate of a network. In a small world network the fraction of

node pairs at distance l increases exponentially with l as |K(l)| ∼ eαl. For an infinite network α is

determined by the average number of next nearest neighbors of a node following (70). In case the

network is finite, however, α becomes smaller, because of the saturation observed as l approaches

〈l〉. Here we demonstrate the evaluation of α for a scale-free network obtained from a series of

genetic perturbation experiments [4] (S.VIII B). As the figure indicates for l < 〈l〉 the network

indeed features an exponential expansion, which saturates for l > 〈l〉 (circles). We present four

approaches for the evaluation of α: Equation (70), exact for N → ∞ is shown to overestimate

α (purple); taking αER = ln 〈k〉, exact for an Erdős-Rényi random network underestimates the

actual expansion rate (blue); using linear regression (LR) to obtain the best fit for the data points

(for l ≤ 〈l〉) provides the most reliable result (green). In this work we used Eq. (72) to evaluate

α directly from the network topology as αSW = lnN/ 〈l〉 (orange), which as the figure indicates,

provides a good estimate for the network expansion.







ǫ+1(0) = 1

ǫ+1(l + 1) = 1− e−αǫ+1(l)
, (75)

from which ~ǫ(l) can be obtained for all l. The solution of (75) is

ǫ+1(l) = 1− e−α +O(e−2α) (76)

providing

~ǫ(l) =
(

e−α, 0, 1− e−α
)

=

(

〈k〉

〈k2〉 − 〈k〉
, 0,

〈k2〉 − 2 〈k〉

〈k2〉 − 〈k〉

)

, (77)

which is independent of l. For an ER network we have

~ǫ(l) =

(

1

〈k〉
, 0,

〈k〉 − 1

〈k〉

)

, (78)

and for a SF network
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~ǫ(l) =







(0, 0, 1) γ ≤ 3
(

ζ(γ−1)
ζ(γ−2)−ζ(γ−1)

, 0, ζ(γ−2)−2ζ(γ−1
ζ(γ−2)−ζ(γ−1)

)

γ > 3
. (79)

To summarize, Eq. (55) provides the most general description of ~ǫ(l), which can be obtained

directly from the network topology; Eq. (77) provides ~ǫ(l) in the limit N → ∞, which

is independent of l, and fully determined by the first and second moments of the degree

distribution; Eqs. (78) and (79) are valid for ER and SF networks, respectively.

The expansion factor is closely related to the small world property, as it captures the rate

of the network expansion. If ǫ+1(l) is large, the meaning is that nodes in Ki(l) tend to draw

more links to nodes in Ki(l+ 1) than to nodes in Ki(l) or Ki(l− 1). This results in a rapid

exponential growth of the shells as appears in Eq. (69). Using Eq. (77) together with (70)

we find that

ln

(

ǫ+1(l)

ǫ−1(l)

)

≈ α, (80)

indicating that like α, ~ǫ(l) also characterizes the degree of small worldness of the network,

by capturing the rate by which the shells K(l) expand with l.

C. The Correlation Function for Large Networks

Above we have shown that in the N → ∞ limit the expansion factor, ~ǫ(l), becomes

independent of l (77). Under these conditions Ψ(l, ρ) (66) also becomes independent of l,

allowing us to perform the integral (65), providing

G(l) = e−
l
λ , (81)

where

λ = −
1

ln (Ψ(α, ρ))
(82)

is the correlation length of the system. The parameter λ provides the radius of impact of a

node, expressing the average penetration depth of a perturbation. Equation (66) takes the

form
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Ψ(α, ρ) =
ρ−1

2(1− e−α)

[

1−

√

1− 4
e−α(1− e−α)

ρ−2

]

, (83)

which in the small world limit (large α) can be approximated by

Ψ(α, ρ) = ρe−α +O(ρ2e−2α)). (84)

Consequently we find that the correlation length (82) is

λ =
1

α− ln ρ
, (85)

where α characterizes the topology of the underlying network and ρ (58) characterizes the

dynamical mechanism of the interactions.

For l > 〈l〉 the exponentially growing shells have exhausted most of the nodes, hence the

network no longer features the exponential expansion (69), and the shells Ki(l) begin to

contract (Fig. S1(b1 - b3)). The terms of the expansion factor now satisfy

ǫ−1(l) ≫ ǫ+1(l), (86)

as nodes tend to link mainly to inner shells, at lower l. We follow the same derivation as in

(81) - (85), only this time we take the limit (86), finding that now (82) predicts

λ̃ = −
1

ln ρ
. (87)

We thus arrive at the prediction that G(l) is characterized by two correlation lengths, λ (85)

and λ̃ (87), as

G(l) =







e−
l
λ l < 〈l〉

e−(
〈l〉
λ
+

l−〈l〉

λ̃
) l > 〈l〉

. (88)

Equation (88) describes the propagation of an individual perturbation, providing the

correlation lengths, λ and λ̃, which characterize the rate of decay of perturbations. The

specific value of λ and λ̃ depends on the system’s dynamics through Rij in ρ (58), hence

our next step is to use the degree dependence of Rij in order to evaluate ρ. We analyze Rij

starting with Eq. (19)
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Rij =
Aij

〈g(xn)〉n∈Ki(1)

Sg(xj)Sf (xi), (89)

which we break down term by term. From (30) and (35)we have

Sf (xi) ∼
1

kiSi
∼ k−δ−1

i (90)

and

Sg(xj) ∼
Ij
kj

∼ kϕ−1
j . (91)

Using (45) we write the denominator in Rij (89) as

〈g(xn)〉n∈Ki(1)
=

〈

∞
∑

m=−∞

Cmξ
m
n

〉

n∈Ki(1)

∼ 〈ξm0
n 〉n∈Ki(1)

,∼
〈

k−m0
n

〉

n∈Ki(1)
, (92)

where in the last step we took only the leading term m0 in the Laurent expansion.

Collecting all three terms (90) - (92) we find that the local correlation matrix (89) follows

Rij = C
Aij

〈

k−m0
n

〉

n∈Ki(1)

k−δ−1
i kϕ−1

j . (93)

where the constant C depends on the microscopic details of the pairwise dynamics, such as

the rate constants for the different dynamical processes in (9). To obtain ρ we must average

over Rij as appears in (54)

ρ =

〈

〈

ki 〈Riq〉q∈Ki(1)

〉

i∈Kj(l)

〉

j

(94)

First we use (93) to write the average of Rij over i’s nearest neighbors as

〈Rij〉j∈Ki(1)
= C

〈

k−δ−1
i kϕ−1

j
〈

k−m0
n

〉

n∈Ki(1)

〉

j∈Ki(1)

= C

〈

kϕ−1
j

〉

j∈Ki(1)
〈

k−m0
n

〉

n∈Ki(1)

k−δ−1
i , (95)

after which we can write (94) as

ρ = C

〈〈
〈

kϕ−1
j

〉

j∈Ki(1)
〈

k−m1
n

〉

n∈Ki(1)

k−δi

〉

i∈Kq(l)

〉

q

≈
1

〈

k−m1
n

〉

K(1)

〈

kϕ−1
j

〉

K(1)

〈

k−δi
〉

K(1)
. (96)

The last step, factorizing the inner product average into a product of separate averages, is

exact in the absence of degree correlations. This also enables us to substitute the i and
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q dependent terms, n ∈ Ki(1) and i ∈ Kq(l), by K(1), denoting an average over nearest

neighbor nodes, not specific to i, q or l (see disscusion surrounding Eq. (58)). Using (71)

we have eα = 〈k〉K(1), from which it follows that

ρ ≈ Ce(m1−δ+ϕ−1)α. (97)

Extracting the logarithm and taking ϕ from (44), we arrive at

ln ρ = (m0 −m1)α + lnC, (98)

where m0 is the leading term in (45) and m1 is the leading non-vanishing term in the

expansion. In the small world limit, where α is large, we write (98) as ln ρ ≈ (m0 −m1)α,

accurate up to a logarithmic correction which depends on the specific rate constants, but

is not inherent to the dynamical model. The correlation lengths in (88), given by (85) and

(87), become

λ =
1

(β + 1)α

λ̃ =
1

βα
, (99)

where

β = m1 −m0. (100)

Finally, the correlation function Γ(l) is obtained for l < 〈l〉 using (48) and (69), providing

Γ(l) = eαle−l/λ = e−βαl. (101)

The value of β is determined by the structure of g(f−1(x)), leading to two distinct univer-

sality classes:

Conservative dynamics: If the leading term in the expansion (45) is g(f−1(x)) ∼ xm1

(m1 6= 0) then the leading term, m0, and the leading non vanishing term, m1, coincide. As

a result β = 0 (100), and Γ(l) = 1 (101). This describes a conservative process, in which

perturbations propagate without loss. Note that the individual correlations do decay as

G(l) = e−αl, but this decay is due to the topological expansion of the network, in which
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the original perturbation is distributed over K(l) ∼ eαl nodes. Hence the total effect is

conserved.

Dissipative dynamics: The only other possibility is that g(f−1(x)) ∼ C0+Cm1x
m1 (m1 >

0), in which the leading term is m0 = 0 and hence β = m1 > 0 (100). Now Γ(l) decays

exponentially with l, describing a dissipative process, in which perturbations remain localized

in the vicinity of the perturbed node. The decay of individual correlations isG(l) = e−α(β+1)l,

which has two sources: the topological expansion (e−αl) and the dissipation (e−βαl).

D. The Correlation Distribution

Consider the probability density that a randomly selected term in Gij is between G and

G+dG. Following (81) we can translate this to the probability P (l) that a randomly selected

node pair is between l and l + dl where

l = −λ lnG. (102)

In a small world network, for which the topological expansion follows (69) we have P (l) ∼ eαl,

and hence

P (G)dg = P (l)
dl

dG
dG ∼

eαl

G
dG. (103)

Substituting (102) for l we arrive at

P (G) ∼ G−ν (104)

where ν = αλ+ 1 or

ν =
β + 2

β + 1
(105)

in which we used λ = 1/(β + 1)α (99).
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Propagation - summary:

The propagation of perturbations is captured by the correlation function

Γ(l) = e−βαl

and the correlation distribution

P (G) ∼ G−ν .

The dissipation rate, β, is determined by the Laurent expansion

g
(

f−1(x)
)

=
∞
∑

m=−∞

Cmx
m.

and the exponent ν follows

ν =
β + 2

β + 1
.

• If the lowest power in the expansion is g(f−1(x))|x→0 ∼ xm0 (m0 6= 0) we have

β = 0 and ν = 2, describing conservative dynamics.

• If the lowest power is m0 = 0 we have g(f−1(x))|x→0 ∼ C0+Cm1x
m1 (m1 > 0),

providing β = m1 and ν = (β+2)/(β+1) < 2, describing dissipative dynamics.

E. The Role of the Small World Property

The derivation above relies on the small world property, which is present in all random

networks [3], and expressed here by the exponential expansion of Eq. (69). Hence while

the δ and ϕ exponents are fully independent of the underlying topology, the universality of

β and ν, and hence Γ(l) and P (G), depends on the presence of the small world property.

To gain a deeper understanding of the role of the small world property in generating the

dynamical universality, we consider again the logarithmic correction of (98) which in (101)

and (81) leads to
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FIG. 3: The small world property and dynamical universality. The parameters β and ν

are universally determined by the leading terms of (45) up to a logarithmic correction. In the small

world limit (large α) this correction becomes negligible and universality emerges. Here we present

β and ν obtained for epidemic dynamics (E) with varying rate constants. For non-small world

networks (small α) β and ν express strong diversity, but as we enter the small world regime they

converge to their universal value, dependent only on the dynamical class of E (β = 1, ν = 3/2).

Γ(l) = e−(β+
lnC
α )αl

G(l) = e−(1+β+
lnC
α )αl (106)

and in (105) provides

ν =
β + 2 + lnC

α

β + 1 + lnC
α

, (107)

namely

β → βEff = β + lnC/α. (108)

In this logarithmic term are encapsulated all the non-universal details, e.g. rate constants

used in (9). When α is small, this non-universal correction dominates the system’s dynamics,
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determining the decay of correlations in G(l) and Γ(l) and their distribution in P (G). For

instance in a lattice, where the small world property is absent, we have α → 0 and (106)

predicts Γ(l) = e−l lnC , which is fully governed by the microscopic details of (9). Hence in

non small world networks the diversity prevails, as the microscopic details of (9) impact the

propagation dynamics, while in the small world limit, these details become marginal and

universality emerges (Fig. S3).

V. GLOBAL DYNAMICS: CASCADES

While the impact Ii captures the local effect of a perturbation on the close neighbors

and the correlation function, Γ(l), captures its propagation to more distant nodes, the

full effect of a perturbation is captured by the cascade size Ci, which describes the global

response of the system to an individual perturbation. The cascade includes all nodes whose

activity changes beyond a threshold q following a perturbation. To derive the cascade size

distribution, P (C), consider a perturbation induced on node i with degree ki. First the

perturbation impacts each of i’s ki nearest neighbors, whose average response is given by

(7)

〈Rij〉j∈Ki(1)
∼
Ii
ki

∼ kϕ−1
i . (109)

Following the response of each of these nearest neighbors the impact is propagated to the rest

of the network following G(l) ∼ e−(β+1)αl ((88) and (99)). Here we use the assumption that

there are no degree correlations in our network, allowing us to describe the propagation from

i’s nearest neighbors using the average correlation function, independently of ki. Indeed, in

the absence of degree correlations, while the node degrees ki may be highly heterogeneous,

the degrees of the neighbor’s, next neighbor’s etc. are quite uniform. Hence we follow the

propagation of individual perturbations from i as

Gi(l) ∼ kϕ−1
i e−(β+1)αl. (110)
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For a node to be part of i’s cascade its response to i’s perturbation must be greater than

the threshold, namely Gi(l) > q, which allows us to obtain the cascade radius from (110) as

lC ∼ −
1

(β + 1)α
ln
(

qk1−ϕi

)

. (111)

On average, all nodes within a distance of lC from i will be included in Ci. To obtain the

number of nodes within this radius we follow |Ki(l)|, the number of nodes at distance l from

i. Clearly, Ki(1) = ki, after which the expansion continues as Ki(l) ∼ eαl, using, once again,

the absence of degree correlations. Hence the expansion from i follows

|Ki(l)| ∼ kie
αl (112)

and the cascade size becomes

Ci ∼ |Ki(lC)| ∼ ki
(

k1−ϕi

)− 1
β+1 . (113)

Gathering all the terms we arrive at

Ci ∼ kωi (114)

where

ω =
ϕ+ β

β + 1
(115)

depends only on the dynamical model (f(x) and g(x)) through the behavior of the local

impact (ϕ) and the propagation dynamics (β). See also Fig. 4 where we show a geometric

derivation of ω.

The precise value of ω leads to four classes of dynamical behavior, based on the values of

β and ϕ:

(i) Uniform cascades (β = ϕ = 0): For a conservative system with uniform local impact

(115) predicts ω = 0. Hence all nodes generate comparable cascades, independent of

their degree, providing a uniform cascade size distribution P (C). Remarkably, in such

systems even if P (k) is fat-tailed, the cascade size distribution P (C) will be bounded,

so that the dynamical behavior is independent of the topological heterogeneity.
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FIG. 4: Evaluating the cascade size. (a) The cascade includes all nodes whose activity changes

above a threshold q following the perturbation of the central node (source). (b) The cascade radius

defines the distance from the source for which the correlations are above q. For the average node we

write G(l0) = q, providing the average cascade radius l0. For a node with degree ki we first evaluate

the impact on its nearest neighbors. Taking advantage of the geometry of the semi-logarithmic plot

we write ∆G = (ϕ−1) ln ki. From the nearest neighbors of the source correlations keep propagating

as (81), which is geometrically described by the straight line G(l) ∼ −(β+1)αl. The cascade radius

is thus enlarged by ∆l = ∆G/(β + 1)α = [(ϕ − 1)/(β + 1)α] ln ki. (c) To evaluate the number of

nodes within the cascade radius we present |Ki(l)| (69) and |K(l)| on the semi-logarithmic plane.

The average cascade is 〈C〉 = |Ki(l0)|, and the increase observed in Ci is geometrically described

by ∆C. It has two sources: the more rapid expansion |Ki(l)| ∼ ki|K(l)| and the larger cascade

radius li = l0 + ∆l. Geometrically we obtain ∆C = ln ki + α∆l = (ϕ + β)/(β + 1) ln ki. The

translation back to the linear scale provides Ci ∼ kωi where ω follows (115).

(ii) Locally heterogeneous cascades (β = 0, ϕ 6= 0): For a conservative system with

heterogeneous local impact (115) predicts ω = ϕ. Hence Ci scales with a nodes degree,

ki, and consequently P (C) is driven by P (k), becoming fat-tailed if P (k) is fat-tailed.

The cascade heterogeneity is driven by the local dynamics through the heterogeneous

local impact that nodes have on their nearest neighbors (Ii, ϕ). Hence ω = ϕ and

P (C) ∼ P (I).

(iii) Propagation generated heterogeneous cascades (β > 0, ϕ = 0): For dissipative

dynamics with uniform local impact (115) predicts ω = β/(β + 1) > 0, so that P (C)

is heterogeneous. The source of the cascade heterogeneity is the dissipative nature

of the spreading dynamics (Γ(l), β), rather than the local impact between neighbors.

Hence, remarkably, while all nodes have comparable local impact, their global impact

on the network can become highly heterogeneous.

(iv) Heterogeneous cascades (β > 0, ϕ 6= 0): In these systems ω > 0 and the global
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dynamics is characterized by heterogeneous cascades. The heterogeneity originates

in both the local dynamics (heterogeneous local impact) and the spreading dynamics

(dissipative), hence both P (C) and P (I) are fat-tailed, but as opposed to (ii) P (C)

may follow a different form than P (I), as it is not only a consequence of the local

dynamics, but also of the spreading patterns.

For a directed network we must distinguish between the role of ki in Eq. (111) and that

in Eq. (112). The degree appearing in the derivation of (111) is the in-degree, kIni , which

charaterizes the number of neighbors acting on i. To understand this consider Eq. (22),

from which the scaling of Rij was derived. There, ki is the number of neighbors apearing

in the interaction term of the dynamical equation (9), namely the number of nodes acting

on i, or kIni . However, the network expansion, desctribed by (112) depends on the number

of outgoing links kOut
i . Hence, repeating the above calculation we find that for directed

networks

Ci ∼
(

kIni
)ωIn kOut

i (116)

where ωIn = (ϕ− 1)/(β + 1).

VI. GENERALIZING THE DYNAMICS

The derivations of Secs. III - V can be generalized to account for all dynamics following

dxi
dt

= W (xi) +
N
∑

j=1

AijQ(xi, xj) (117)

with a general Q(xi, xj), including even for functions that cannot be factorized as in (17).

We start from the general result derived in Sec. III for Rij, (see Eq. (16))
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Rij =
AijxjQ̃

′
xj
(xi, xj)

kixi

〈

Q̃′
xi
(xi, xn)

〉

n∈Ki(1)

. (118)

The stability Si is obtained by summing over i, while the impact Ij by summing over j,

which following a derivation analogous to that of Sec. III A, can be shown to depend on the

three functions

f(xi) =
〈

Q̃(xi, xj)
〉

j∈Ki(1)
(119)

h(xi) =

〈

∂Q̃(xi, xj)

∂xj

〉

j∈Ki(1)

(120)

g(xj) =
〈

Q̃(xi, xj)
〉

i∈Kj(1)
. (121)

The pertinent Laurent expansions are thus

f−1(x) =
∞
∑

n=−∞

anx
n (122)

h
(

f−1(x)
)

=
∞
∑

w=−∞

bwx
w (123)

g
(

f−1(x)
)

=
∞
∑

m=−∞

cmx
m, (124)

whose leading terms uniquely determine the dynamical exponents of the system.

We follow all the same steps to derive Ii and Si (Sec. III), Γ(l) and P (G) (Sec. IV) and

Ci (Sec. V). This results in

δ = n1 − n0 + w0 − 1 (125)

ϕ = δ −m1 + 1 (126)

β = m1 −m0 + w0 − 1. (127)

As before ν = (β + 2)/(β + 1) and ω = (β + ϕ)/(β + 1). In case Q̃(xi, xj) can be factorized

as in (17) we have h(f−1(x)) ∼ x, hence w0 = 1 and the results of (125) - (127) converge to

those documented in the main paper.
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Note, however, that with no separation of variables the leading terms of (122) - (124)

may depend on the steady-state values xi. Indeed that fact that xj cannot be factored out in

(119) and (120) (or xi in (121)) means that the relevant Laurent expansion may have powers

that depend on the specific values of xj (or xi). As a result the dynamical exponents will also

depend on the steady state activities, no longer having the intrinsic discrete values observed

for the factorized models (17). Instead, the same dynamical model may be characterized by

different exponents, depending on the detailed steady state of the system. The formalism

outlined in Secs. III - V can be applied to this case as well, leading to potentially novel

behavior. At this point, lacking systems to motivate further work in this direction, we have

not followed this path.

VII. NUMERICAL SUPPORT

To test the predictions of the dynamical theory, we performed extensive numerical simu-

lations, incorporating a set of widely used dynamical models (see Table I in paper) on both

model and real network topologies. In each of these numerical tests we ran Eq. (9) using

a fourth-order Runge-Kutta stepper, having it reach steady-sate for all node activities. We

then obtained the full correlation matrix, Gij (3) by perturbing every xj as

xj → (1 + χ)xj (128)

with χ = 0.1, and running the Runge-Kutta stepper again until the system reaches the

perturbed steady state, in which,

xi → (1 + χij)xi. (129)

From this we constructed the correlation matrix according to

Gij =
χij
χ
. (130)
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FIG. 5: Universality classes in empirical networks. To test our predictions on real networks,

we measured the dynamical functions on three real topologies, each with an appropriate dynamics.

We applied biochemical dynamics (B) to the yeast protein-protein interaction (PPI) network,

consisting of 1, 647 nodes and 5, 036 links [5]; regulatory dynamics (R) to the yeast transcriptional

regulatory network (TRN), consisting of 915 nodes and 1, 063 directional links [6] and epidemic

dynamics (E) to the email dataset analyzed in Sec. S.VIII.A, generating a network of 2, 688 nodes

and 47, 578 links [7].

In the simulations described below, we set all rate constants to one, unless explicitly men-

tioned otherwise.
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A. Epidemic Dynamics - E

In the susceptible-infected-susceptible (SIS) model each node may be in one of two po-

tential states: infected (I) and susceptible (S). The dynamics is given by the two processes

I + S → 2I, (131)

where a susceptible node is infected by one of its nearest neighbors, and

I → S, (132)

where an infected node is recovered, becoming susceptible again. The activity of a node,

0 ≤ xi ≤ 1 denotes the probability that the node is in the infected state. The dynamics of

the system is governed by [8]

dxi
dt

= −Bxi +
N
∑

j=1

AijR(1− xi)xj. (133)

The first term on the r.h.s. accounts for the process of recovery and the second term accounts

for the process of infection, a node could only be infected if its in the susceptible state (1−xi)

and one of its neighbors is infected (xj).

We first define the dynamical functions f(x) and g(x) which here are

f(x) =
1− x

x

g(x) =
R

B
x. (134)

We obtain δ by expanding f−1(x) as in (34)

f−1(x) =
1

1 + x
∼ 1− x+

1

2
x2 + . . . . (135)

Since the leading term has n0 = 0 and the leading non-vanishing term is n1 = 1, we have

heterogeneous stability with δ = n1 = 1 (33).

Next we focus on the structure of g(f−1(x)), which, since g(x) ∼ x (134), is the same as

(135), namely g(f−1(x)) ∼ 1−x+O(x2). Hence the leading term is m0 = 0 and the leading

non-vanishing term is m1 = 1. This provides heterogeneous impact with φ = δ+1−m1 = 1
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FIG. 6: The expansion factor for the yeast transcriptional regulatory network. The

tree-like structure of the transcriptional regulatory network, in which loops are scarce, is expressed

in the expansion factor by an almost vanishing ǫ0(l) and ǫ−1(l), and a dominant ǫ+1(l), persistent

for all l.

(44), and dissipative propagation with β = m1 −m0 = 1 (100). Finally, for P (G) we have

ν = (β + 2)/(β + 1) = 3/2 (105), and for the cascades we have ω = (φ + β)/(β + 1) = 1

(115), resulting in heterogeneous cascades.

As an empirical network for the SIS model we used an email dataset [7], which records

all 3 × 105 emails sent between 3, 188 individuals over the course of T = 161 days. We

constructed the network by linking every pair of nodes where i sent at least one email to j

over the sampled period, resulting in a giant component with 2, 688 nodes and 47, 578 links

(Fig. S5a3 - e3).

B. Regulatory Dynamics - R

To model regulatory interactions we referred to the commonly uses Michaelis-Menten

dynamics which take the form [9, 10],

dxi
dt

= −Bxi +
N
∑

j=1

RH(xj), (136)

where H(xj) is the Hill function characterizing the activation/inhibition of xi by xj. As

the regulation of xi depends on the presence or absence of xj, having little sensitivity to

j’s specific abundance, the Hill function is designed to be a switch-like function, satisfying

H(xj) → 1 (H(xj) → 0) for large (small) xj in case xj activates xi, or H(xj) → 1 (H(xj) →

0) for (small) large xj in the case of inhibition. More specifically, H(xj) has the form [9]
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FIG. 7: Cascades in a directed network. For the directed yeast transcriptional regulation

network we calculate Ci using (116), predicting Ci ∼ kOut
i .

H(xj) =







xhj
1+xhj

for activation

1
1+xhj

for inhibition
, (137)

where h is the Hill coefficient [10]. Equation (136) can be mapped on to (9) by taking

f(x) ∼
1

x

g(x) ∼ H(x). (138)

Here, as f−1(x) ∼ x−1, the leading terms are n0 = n1 = −1, and hence the stability is

uniform, namely δ = 0 (33).

For the second Laurent expansion (45) we write

g(f−1(x)) ∼ H(x−1) ∼







1− xh +O(x2h) for activation

xh +O(x2h) for inhibition
. (139)

Hence for activation we have m0 = 0 and m1 = h, predicting: φ = 1 − h (44), β = h (100)

and consequently ν = (h+2)/(h+1) (105) and ω = 1/(1+h) (115). For inhibition, following

the same steps we find m0 = m1 = h, hence φ = 1− h as for activation, but as opposed to

that β = 0, ν = 2 and ω = 1− h.

We tested our predictions on the yeast transcriptional regulatory network (TRN) [6]),

which is dominated by activation, accounting for over 80% of the links. Hence from the

two predictions above, activation versus inhibition, we focus on the first, namely the one for
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activation. Choosing h = 1 in our simulations, we predict δ = 0 (uniform stability), φ = 0

(uniform impact), β = 1 (dissipative dynamics), ν = 3/2 and ω = 1/2 (spread generated

heterogeneous cascades). In Fig. S5a2 - e2 we show the results obtained for the yeast TRN,

all in line with our predictions. As Fig. S6 indicates, the yeast TRN has ǫ+1(l) > ǫ−1(l) for

all l, describing a unique tree-like structure, which does not saturate. This is because this

directed network has almost no loops and thus continues on branching, forming a hierarchical

structure for all lmax = 5 layers. As a result, most pairs of nodes are at distance l → ∞,

namely there is no directed path connecting them, and the average path length, 〈l〉 ≈ 1.4

calculated only among the finite paths, is greatly underestimated. Hence we cannot use Eq.

(72) to obtain a reliable estimate for α in this case. As an alternative we use the empirically

measured ~ǫ(l), which as shown in Fig. S6, is independent of l. We thus extracted α using

(77), providing α = − ln(1 − ǫ+1(l)) ≈ 1.7. As this network is directed we used (116) to

obtain the scaling of Ci as Ci ∼ kOut
i (Fig. S7).

C. Biochemical Dynamics - B

As a biochemical example we consider protein-protein interactions (PPI), which include

the processes ∅ → Xi describing the synthesis of an protein i at rate F ; Xi → ∅ describing

protein degradation at rate B; Xi + Xj ⇌ XiXj describing the binding (unbinding) of a

pair of interacting proteins at rate R (U). The hetero-dimer XiXj undergoes degradation

XiXj → ∅ at rate Q. The dynamical equations for this system are [11]

dxi
dt

= F − Bxi +
N
∑

j=1

Uxij −

N
∑

j=1

AijRxixj

dxij
dt

= AijRxixj − (U +Q)xij, (140)

where xi(t) is the concentration of i and xij(t) is the concentration of the hetero-dimer XiXj.

Assuming steady state for the hetero-dimer concentration, we set dxij/dt = 0, obtaining

dxi
dt

= F −Bxi −

N
∑

j=1

AijR̃xixj (141)

in the form (9), where the effective binding rate R̃ = QR/(U+Q). The dynamical functions

are thus
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f(x) =
x

F − Bx

g(x) = R̃x, (142)

from which we obtain (34) and (45)

f−1(x) =
Fx

1 + Bx
∼ x+O(x2)

g
(

f−1(x)
)

=
R̃Fx

1 + Bx
∼ x+O(x2). (143)

The first expansion in (143) provides n0 = n1 = 1, predicting δ = 0 (33) (uniform stability).

From the second expansion we write m0 = m1 = 1, and hence φ = 0 (44) (uniform impact)

and β = 0 (100) (conservative propagation). Finally, as for all conservative propagation

dynamics, ν = 2 (105) and following (115) we have ω = 0 (uniform cascades).

Note that the conservative nature of the dynamics is a consequence of only the leading

terms in the expansion of (142). This implied a conservative propagation even if, at the

microscopic level, the pairwise dynamics is non-conservative. Indeed, in (141) processes

such as influx (F ) and degradation (B, Q) violate the conservation of mass as they draw

proteins in and out of the system. Still, we predict that perturbations propagate without

loss (β = 0). These non-conservative processes are expressed in the logarithmic correction

of (46), and are expected to have little effect in the small world limit (see Sec S.IVE).

In Fig. S5a1 - e1 we display the results of numerical simulations obtained for the yeast

PPI network [5]. A slight discrepancy is observed in the value of ν (1.8 vs. 2). To understand

this deviation consider the logarithmic correction in the value of β (98), which we rendered

negligible in the small world limit where α is large. As the yeast PPI network has a relatively

low average degree of 〈k〉 ≈ 3 it also has a small α = 1.3. Consequently the logarithmic

correction has a detectable impact on ν (107). This is especially significant in the case of

conservative dynamics, where βEff = 0 + lnC/α (108), so that the role of the logarithmic

correction is more pronounced (In the SIS or MM models , βEff = 1 + lnC/α, so that the

logarithmic correction has a less significant impact). We can now use the measured value of

ν to evaluate the effective dissipation rate βEff using (105), obtaining βEff = 0.25, in prefect

agreement with the simulation results (Fig. S5d1). Choosing networks deeper in the small
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world limit (such as the model networks featured in the paper) eliminates the effect of the

logarithmic correction, and generates the expected universal dynamical behavior.

D. Birth-Death Processes - BD

Birth-death processes have many applications in population dynamics [12], queuing the-

ory [13] or biology [12]. We consider a network in which the nodes represent sites, each site

i having a population xi, where population flow is enabled between neighboring sites. This

process can be described by a dynamical equation of the form (9) as

dxi
dt

= −Bxbi +
N
∑

j=1

Aijx
a
j . (144)

The first term on the r.h.s. represents the internal dynamics of site i, characterized by

the exponent b. In queuing dynamics, choosing b = 0 represents a constant influx (out-

flux) into (out of) site i; in population dynamics mortality can be represented by setting

b = 1, indicating that the number of mortality instances per unit time is proportional to the

current population at i; below we set b = 2 to represent pairwise depletion, as frequently

used in ecology to account for competition within a population over limited resources [14],

or in biochemistry to model dimerization [11]. The second term describes the flow from i’s

neighboring sites j into i, which is typically linear in xj, namely a = 1.

Equation (144) can be cast into (10) with

f(x) = −
1

Bxb

g(x) = xa, (145)

providing

f−1(x) ∼ x−1/b

g
(

f−1(x)
)

∼ x−a/b. (146)

Hence BD has n0 = n1 = −1/b 6= 0 and m0 = m1 = −a/b, predicting δ = 0 (uniform

stability), φ = 1+a/b = 3/2 > 0 (heterogeneous impact) and β = 0 (conservative dynamics).
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Consequently we also predict ν = 2 and ω = φ = 3/2 (locally generated heterogeneous

cascades).

E. Scale-free Networks

Our formalism predicts five parameters, δ, φ, β, ν and ω, whose values are determined only

by the dynamics of the system, independent of topology. These parameters, in turn, predict

the behavior of the pertinent distributions, P (S), P (I) and P (C) and their dependence on

the network topology. To be specific the uniform/heterogeneous distinction is an intrinsic

property of the dynamics, independent of the underlying topology, however the specific form

of these distributions may depend on the topology through the degree distribution, P (k).

Consider a random variable Xi (representing the stability, impact or cascades above), which

scales as

Xi ∼ kψi . (147)

For ψ 6= 0 this variable displays heterogeneous dynamics in which P (X) is driven by P (k)

via

P (X) ∼

∫ ∞

0

P (k)δ(kψ −X)dk. (148)

For a scale-free network with P (k) ∼ k−γ we solve this integral by substituting x = kψ,

obtaining

P (X) ∼

∫ ∞

0

x−Ψδ(x−X)dx ∼ X−Ψ, (149)

where

Ψ =
γ + ψ − 1

ψ
. (150)

This allows us the obtain the precise form of P (S), P (I) and P (C) for a scale-free network

substituting δ, φ or ω for ψ in (150). For the scale-free model network used in the numerical

simulations we had γ = 3, for the real networks, we measured γ separately for each network,

finding γ = 2.2 (yeast PPI), γ = 3.0 (yeast TRN) and γ = 1.9 (Email).
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VIII. EMPIRICAL SUPPORT

To test the predictive power of the theory on empirical data we focused on two systems

pertaining to human and cellular dynamics.

A. Human Dynamics

The dataset [7] records all 3× 105 emails sent between 3, 188 individuals over the course

of T = 161 days. We constructed the network by linking every pair of nodes where i sent

at least one email to j over the sampled period. While this allows for the construction of

a directed network, in practice, we found that almost all links are reciprocal, to the extent

that no significant difference was detected between the directed and the undirected versions

of the network. The dynamics of node i is given by xi(t), denoting the number of emails

sent by a user over a period of ∆t = 6, 10 or 24 hours (the results shown in the paper were

obtained for ∆t = 6 hours). To evaluate the correlation between the usage patterns we

measured

Gij =
1
T

∫ T

0
xi(t)xj(t) dt

1
T

∫ T

0
x2i (t) dt

=
〈xixj〉

〈x2i 〉
, (151)

providing the degree to which the usage pattern of j is correlated with that of i. To evaluate

the propagation we first used the non-normalized Gij = 〈xixj〉, which is symmetric, to obtain

ΓRaw(l). We then set Γ(l) = ΓRaw(l)/ΓRaw(0) to ensure Γ(0) = 1.

Note that the only arbitrary parameter in this analysis is ∆t, which is chosen to reflect

the typical time scales of email activity (between several hours to one day). To test if this

parameter affects the results we measured xi(t) and (151) using the three specified values

of ∆t. The results, shown in Fig. S8a - d indicate that our analysis is not sensitive to the

selection of ∆t.

B. Cellular Dynamics

The microarray data obtained from [4] includes J = 110 experiments in which 55 yeast

genes where perturbed (twice for each gene), measuring the resulting change in the expression

of the remaining N = 6, 222 genes. This results is an N × J matrix in which the elements
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FIG. 8: Analysis of the Email dataset. The analysis of the human activity requires the arbitrary

selection of the time resolution ∆t. Here we repeated the analysis for three different choices of ∆t:

∆t = 24 (red), ∆t = 10 (blue) and ∆t = 6 (green) hours, showing that our results are insensitive

to the specific choice of ∆t.

are given by

Gij =
xi(j)

xi(0)
, (152)

where xi(0) is the expression level of gene i in the control, and xi(j) is the expression level of

the i gene following the perturbation of j. Lacking the underlying topology, we approximated

the stability and impact by

Si =
1

J

J
∑

j=1

Gij (153)

and

Ii =
1

N

N
∑

j=1

GT
ij. (154)

While we could not directly measure δ and φ, as they require us to know the degrees ki, we

could indirectly infer the pertinent class from P (S) and P (I), whose measurement requires

no knowledge of the underlying network. Similarly, we could not directly measure β and ω,

but the associated distributions P (G) and P (C) could be obtained as they too do require

us to know the topology.
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IX. ROBUSTNESS OF THE THEORY

A. Topological Uncertainty

In many cases, the challenge in analyzing network dynamics begins at the stage of defin-

ing the network, namely selecting the criteria by which to draw the links. A liberal strategy,

in which these criteria are loose, will generate a relatively dense network, while a conserva-

tive strategy, following strict criteria, raises the bar for linking between nodes, resulting in

a relatively sparse network, with the nodes having typically low degrees. For instance, in

the email network analyzed above (Sec. S.VIIIA), the structure of the underlying network

strongly depends on the definition of a link: does a single email exchange between a pair

of nodes constitute a significant social tie, or perhaps several emails (q) are required. This

arbitrary choice impacts the degrees of all nodes, the distance between them, and conse-

quently the value of α - a liberal choice (q low) leads to a dense network with a large α, and

a conservative choice (q high) results in a sparse network with a small α. However, we argue

that the dynamical functions presented in this work, are all robust against such variability

in the network construction strategies, and can thus provide dynamical predictions even in

the face of topological uncertainty.

This robustness is clear in the case of P (S), P (I), P (G) and P (C), which can be measured

directly from the dynamical data (e.g. the microarray experiments), completely independent

of the network structure. Indeed, to obtain these distributions one does not need to construct

the network topology at all, so that it is fully independent of any structural knowledge about

the network (see Sec. S.VIII B, where we explicitly achieve this).

To understand the impact of the threshold q on the scaling of S
i
and Ii, consider its effect

on the degrees of all nodes. Adopting a liberal (conservative) strategy will shift the degrees

upwards (downwards), effectively rescaling them as

ki(q
′) ∼ C(q, q′)ki(q), (155)

where C(q, q′) > 1 (C(q, q′) < 1) if q′ < q (q′ > q). Such a shift in the degrees of all nodes

has no effect on the scaling of S
i
and Ii so that δ, and ϕ remain unaffected. Of course, one
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can define criteria for the network construction, where the degrees of all nodes change in a

non-monotonic fashion, such that nodes with a low degree in one construction scheme end

up having a high degree in the other, affecting the scaling of S
i
and Ii. However, such an

inconsistency between the construction schemes is unlikely, if both are to capture the true

patterns of interactions in the system. Indeed, one expects that a highly connected node

under one network construction scheme will remain highly connected in the other. Thus as

long as the degree ranking is preserved, the scaling exponents are not likely to significantly

change.

The measure which is most sensitive to the topology of the network is Γ(l), which depends

on α, and consequently on the distance between all pairs of nodes. Still, as we next show, the

self-consistency of the theory ensures that even Γ(l) maintains its validity under different

network construction strategies. To understand this consider a system, e.g. the email

dataset, for which the network was constructed using two thresholds, q > q′, giving rise to

the topologies T sparser than T ′, with α < α′. We now focus on a pair of nodes, i and j,

whose dynamical correlation is Gij. Using the sparser topology T we find that these two

nodes are more distant than with the denser topology T ′, namely l > l′. However, from

(99), as λ is inversely dependent on α, we also find that λ > λ′, so that while the nodes are

more distant in T than in T ′, G(l) and Γ(l) decay more slowly. The predicted correlation

between this pair will be approximately the same in both topologies, namely

e−
l
λ ≈ e−

l′

λ′ . (156)

A similar argument applies also for other sources of topological uncertainty. For instance,

consider a system for which only a fraction f of the links are known. If this fraction

represents a random selection of all links, then on average all degrees will be rescaled as

kiKnown
= fkiReal

, a similar rescaling to that of (155).

B. Empirical Realization

The theory presented here is exact in the limit of small perturbations, where the linear

response of Gij is a valid approximation. In practice, however, measuring Gij can take dif-

ferent forms: Sometimes statistical correlation measures are used as a proxy for Gij, such

as in our analysis of the human dynamics (email). In other cases, the perturbations are
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uncontrolled, so that they may be rather large, such as in the microarray data, where large

perturbations have been applied, at times up to the complete knockout of an entire gene.

As our empirical results clearly indicate, the theory’s predictions are robust against such

deviations from the small perturbation limit. Of course, any prediction regarding specific

terms of Gij is expected to strongly depend on the size and form of the induced perturba-

tions. Yet the exponents we predict capture the relationship between these terms, which are

largely independent of the specific empirical realization of Gij. For instance, if node i has

high stability in response to small perturbations, it is natural to expect that it will also have

a high stability if the perturbations are large. While the specific value of Si might change,

its relationship with all other Sj is likely to remain the same, hence δ, which quantifies this

relationship, will not be sensitive to such deviations in the empirical realization. Similarly,

if the system features dissipative dynamics, one expects this property to be expressed for

all types of perturbations, since the dissipation is an intrinsic characteristic of the flow of

perturbations in the system. A similar argument holds for all other parameters predicted by

our framework. To test this, in Fig. 9 we present results obtained for regulatory dynamics

(R), in which Gij is obtained from both small perturbations (blue) and extremely large per-

turbation, in which the node is completely removed from the system, i.e. knockout (red).

Clearly, the scaling exponents, which are intrinsic to R, are identical in both realizations,

indicating that our theoretical predictions are insensitive to the size of the induced pertur-

bations. This robustness is key to the theory’s empirical relevance, as in actual empirical

settings, the precise mathematical conditions upon which the theory builds, cannot always

be realized.
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FIG. 9: Testing the theory in the limit of large perturbations. To test the theory’s applica-

bility in the limit of large perturbations we obtained Gij for R using node removal, namely setting

xj = 0, and measuring the response of xi (red). The results show that all the dynamical exponents

remain unchanged compared to the ones obtained from small perturbations (blue). Hence our

theoretical predictions, derived under the assumption of small perturbations, are insensitive to the

specific realization of Gij .
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